Computer Graphics

7 - Hierarchical Modeling, Mesh

Yoonsang Lee
Hanyang University

Spring 2023

Notice 1 - Midterm Exam

- Date \& time: May 1, 7:30-8:30 PM
- Place: IT.BT 509 \& 609
- See https://learning.hanyang.ac.kr/courses/119266/discussion topics/248733 for the list of students for each room.
- Scope: Lecture \& Lab 2~7
- Lecture \& Lab 8 is included in the final exam scope
- You cannot leave until 30 minutes after the start of the exam even if you finish the exam earlier.
- That means, you cannot enter the room after $\mathbf{3 0}$ minutes from the start of the exam (do not be late, never too late!).
- Please bring your student ID card to the exam.

Notice 2 - Next Week's Lecture

- Due to the instructor's business trip, next week's lecture (Apr 24) will be provided as a recorded lecture video that will be uploaded to the LMS.
- If you have any questions about the lecture, please post them on the LMS Q\&A board.
- The video will be uploaded tomorrow or the day after tomorrow.
- The lab will be held offline in the classroom starting at 5:00 AM on Apr 24.

Outline

- Hierarchical Modeling
- Concept of Hierarchical Modeling
- Example: Human Figure
- Rendering Hierarchical Models
- Interpretation of a Series of Transformations
- Mesh
- Separate triangles
- Indexed triangle set

Hierarchical Modeling

Hierarchical Modeling

- Nesting the description of subparts (child parts) into another part (parent part) to form a tree structure.
- Each part has its own reference frame (body frame).
- Each part's movement is described w.r.t. its parent's reference frame.

Example - Human Figure

Human Figure - Frames

- Each part has its own reference frame (body frame).

Human Figure - Movement of rhip \& rknee

- Each part's movement is described w.r.t. its parent's frame.
- \rightarrow Each part has its own transformation w.r.t. parent's frame.
- This allows a part to "group" its children together.

Human Figure - Movement of more joints

https://youtu.be/9dz8bvVK9zc
https://youtu.be/PEhyWI8LGBY

- Each part's movement is described w.r.t. its parent's frame.
- \rightarrow Each part has its own transformation w.r.t. parent's frame.
- This allows a part to "group" its children together.

Hierarchical Model

- A hierarchical model is usually represented by a tree structure.
- Another example of hierarchical model is scene graph, a graph structure that represents an entire scene.
- Each node has its own transformation w.r.t. parent node's frame.

Rendering Hierarchical Models

- To render a hierarchical model, we need each node's frame represented w.r.t. world frame, to compute the global position of each vertex.
- Recall:

$$
\begin{aligned}
& \mathbf{p}^{\{0\}}=\mathbf{M p}^{\{1\}} \\
& \text { Standing at }\{0\} \text {, observing } p \\
& \mathbf{p}^{\{0\}} \text { is the position of } \mathbf{p} \text { w.r.t. world frame }\{0\}
\end{aligned}
$$

Rendering Hierarchical Models

- Each node has its own transformation w.r.t. parent node's frame.
\rightarrow Local transformation

Rendering Hierarchical Models

- We need each node's frame represented w.r.t. world frame to render a hierarchical model.
\rightarrow Global transformation
- How can we compute the global transform of a node using the local transforms of other nodes?

Recall: Right Multiplication

- $\mathbf{p}^{\prime}=\mathbf{M}_{1} \mathbf{M}_{2} \mathbf{p}$ (right-multiplication by \mathbf{M}_{2})
- (L-to-R)
- 1') Apply \mathbf{M}_{1} w.r.t. body frame \mathbf{I} (world frame) to update body frame to \mathbf{M}_{1}
- 2') Apply \mathbf{M}_{2} w.r.t. body frame \mathbf{M}_{1} to update body frame to $\mathbf{M}_{1} \mathbf{M}_{2}$
- 3') Locate \mathbf{p} in body frame $\mathbf{M}_{\mathbf{1}} \mathbf{M}_{2}$

(M defines the body frame w.r.t. world frame) ${ }^{`}$

Interpretation of a Series of Transformations

- $\mathbf{p}_{\mathbf{0}}=\mathbf{I} \mathbf{p}_{\mathbf{0}}$
body frame (\{0\})

Standing at $\{0\}$, observing the circle $\rightarrow \mathbf{p}_{0}$

\{3\}

Interpretation of a Series of Transformations

- $\mathbf{p}_{1}=\mathbf{M}_{1} \mathbf{p}_{0}$
body frame (\{1\})
apply w.r.t. $\{0\}$

\{3\}

\{4\}

Standing at $\{1\}$, observing the circle $\rightarrow \mathbf{p}_{\mathbf{0}}$
Standing at $\{0\}$, observing the circle $\rightarrow \mathbf{p}_{1}$

Interpretation of a Series of Transformations

- $\mathbf{p}_{\mathbf{2}}=\underset{\text { body frame }}{\mathbf{M}_{\mathbf{1}} \mathbf{M}_{\mathbf{2}}} \mathbf{p}_{\mathbf{0}}$

\{1\}

$$
\text { Standing at }\{2\} \text {, observing the circle } \rightarrow \mathbf{p}_{\mathbf{0}}
$$

Standing at $\{0\}$, observing the circle $\rightarrow \mathbf{p}_{2}$

\{4\}

Interpretation of a Series of Transformations

- $\mathbf{p}_{\mathbf{3}}=\frac{\mathbf{M}_{\mathbf{1}} \mathbf{M}_{\mathbf{2}} \mathbf{M}_{\mathbf{3}} \mathbf{p}_{\mathbf{0}}}{\text { body frame (\{3\}) }}$

Interpretation of a Series of Transformations

- $\mathbf{p}_{\mathbf{4}}=\underset{\text { body frame }(\{4\})}{\mathbf{M}_{\mathbf{1}} \mathbf{M}_{\mathbf{2}} \mathbf{M}_{\mathbf{3}} \mathbf{M}_{\mathbf{4}}} \mathbf{p}_{\mathbf{0}}$

Standing at $\{4\}$, observing the circle $\rightarrow \mathbf{p}_{\mathbf{0}}$ Standing at $\{0\}$, observing the circle $\rightarrow \mathbf{p}_{4}$

Interpretation of a Series of Transformations

- $\mathbf{p}_{\mathbf{4}}=\underset{\text { body frame }(\{4\})}{\mathbf{M}_{\mathbf{1}} \mathbf{M}_{\mathbf{2}} \mathbf{M}_{\mathbf{3}} \mathbf{M}_{\mathbf{4}}} \mathbf{p}_{\mathbf{0}}$

Standing at $\{4\}$, observing the circle $\rightarrow \mathbf{p}_{\mathbf{0}}$ Standing at $\{0\}$, observing the circle $\rightarrow \boldsymbol{p}_{4}$

Interpretation of a Series of Transformations

- $\mathbf{p}_{\mathbf{4}}=\underset{\text { body frame }(\{4\})}{\mathbf{M}_{\mathbf{1}} \mathbf{M}_{\mathbf{2}} \mathbf{M}_{\mathbf{3}} \mathbf{M}_{\mathbf{4}} \mathbf{p}_{\mathbf{0}}}$

Computing Global Transform from Series of Local Transforms

Global transformation of node 4

- $\mathbf{p}_{\mathbf{4}}=\frac{\mathbf{M}_{\mathbf{1}} \mathbf{M}_{\mathbf{2}} \mathbf{M}_{3} \mathbf{M}_{4} \mathbf{p}_{\mathbf{0}}}{\text { node 4's frame }(\{4\})}$

of node 1--4

Computing Global Transform from Series of Local Transforms

Node i	Global Transform $\mathrm{G}_{\mathrm{i}}=\ldots$
Hips	$\mathrm{M}_{\text {hips }}$
Spine	$\mathrm{M}_{\text {hips }} \mathrm{M}_{\text {spine }}$
Head	$\mathrm{M}_{\text {hips }} \mathrm{M}_{\text {spine }} \mathrm{M}_{\text {head }}$
RightArm	$\mathrm{M}_{\text {hips }} \mathrm{M}_{\text {spine }} \mathrm{M}_{\text {ra }}$
RightForeArm	$\mathrm{M}_{\text {hips }} \mathrm{M}_{\text {spine }} \mathrm{M}_{\text {ra }} \mathrm{M}_{\text {rfa }}$
RightHand	$\mathrm{M}_{\text {hips }} \mathrm{M}_{\text {spine }} \mathrm{M}_{\mathrm{ra}} \mathrm{M}_{\text {rfa }} \mathrm{M}_{\text {rh }}$
LeftArm	$\mathrm{M}_{\text {hips }} \mathrm{M}_{\text {spine }} \mathrm{M}_{\text {la }}$
...	

Rendering Hierarchical Models

$$
\mathbf{p}_{\mathbf{0}}=[-0.5,0.5,-0.5]
$$

Node \mathbf{i}	Global Transform $\mathbf{G}_{\mathbf{i}}=\ldots$
Hips	$\mathbf{M}_{\text {hips }}$
Spine	$\mathbf{M}_{\text {hips }} \mathbf{M}_{\text {spine }}$
Head	$\mathbf{M}_{\text {hips }} \mathbf{M}_{\text {spine }} \mathbf{M}_{\text {head }}$
RightArm	$\mathbf{M}_{\text {hips }} \mathbf{M}_{\text {spine }} \mathbf{M}_{\text {ra }}$
RightForeArm	$\mathbf{M}_{\text {hips }} \mathbf{M}_{\text {spine }} \mathbf{M}_{\mathrm{r}} \mathbf{M}_{\text {rfa }}$
RightHand	$\mathbf{M}_{\text {hips }} \mathbf{M}_{\text {spine }} \mathbf{M}_{\mathrm{ra}} \mathbf{M}_{\text {rfa }} \mathbf{M}_{\text {rh }}$
LeftArm	$\mathbf{M}_{\text {hips }} \mathbf{M}_{\text {spine }} \mathbf{M}_{\text {la }}$
\ldots	

Let's say i-th node is rendered as a unit cube above (without scaling), its vertex position $\mathbf{p}_{\mathbf{i}}{ }^{\prime}$ w.r.t. world frame is...

$$
\mathbf{p}_{\mathbf{i}}^{\prime}=\mathrm{G}_{\mathrm{i}} \mathbf{p}_{\mathbf{0}}
$$

Rendering Hierarchical Models

Node \mathbf{i}	Global Transform $\mathbf{G}_{\mathbf{i}}=\ldots$
Hips	$\mathbf{M}_{\text {hips }}$
Spine	$\mathbf{M}_{\text {hips }} \mathbf{M}_{\text {spine }}$
Head	$\mathbf{M}_{\text {hips }} \mathbf{M}_{\text {spine }} \mathbf{M}_{\text {head }}$
RightArm	$\mathbf{M}_{\text {hips }} \mathbf{M}_{\text {spine }} \mathbf{M}_{\text {ra }}$
RightForeArm	$\mathbf{M}_{\text {hips }} \mathbf{M}_{\text {spine }} \mathbf{M}_{\text {ra }} \mathbf{M}_{\text {rfa }}$
RightHand	$\mathbf{M}_{\text {hips }} \mathbf{M}_{\text {spine }} \mathbf{M}_{\mathrm{ra}} \mathbf{M}_{\text {rfa }} \mathbf{M}_{\mathrm{rh}}$
LeftArm	$\mathbf{M}_{\text {hips }} \mathbf{M}_{\text {spine }} \mathbf{M}_{\text {la }}$
\ldots	

Let's say i-th node is rendered as a cuboid transformed by S_{i} from the unit cube, its vertex position $\mathbf{p}_{\mathbf{i}}{ }^{\prime}$ w.r.t. world frame is...

$$
\mathbf{p}_{\mathbf{i}}^{\prime}=G_{i} S_{i} \mathbf{p}_{0}
$$

- You might want to use "shape transformation" $\mathbf{S}_{\mathbf{i j}}$ for j -th shape of i -th node.

Rendering Hierarchical Models

Node i	Global Transform $\mathrm{G}_{\mathrm{i}}=\ldots$
Hips	$\mathrm{M}_{\text {hips }}$
Spine	$\mathrm{M}_{\text {hips }} \mathrm{M}_{\text {spine }}$
Head	$\mathrm{M}_{\text {hips }} \mathrm{M}_{\text {spine }} \mathrm{M}_{\text {head }}$
RightArm	$\mathrm{M}_{\text {hips }} \mathrm{M}_{\text {spine }} \mathrm{M}_{\text {ra }}$
RightForeArm	$\mathrm{M}_{\text {hips }} \mathrm{M}_{\text {spine }} \mathrm{M}_{\text {ra }} \mathrm{M}_{\text {rfa }}$
RightHand	$\mathrm{M}_{\text {hips }} \mathrm{M}_{\text {spine }} \mathrm{M}_{\mathrm{ra}} \mathrm{M}_{\mathrm{rfa}} \mathrm{M}_{\mathrm{rh}}$
LeftArm	$\mathrm{M}_{\text {hips }} \mathrm{M}_{\text {spine }} \mathrm{M}_{\text {la }}$
...	

- To render a hierarchical model, store global transform $\mathbf{G}_{\mathbf{i}}$ in each node (i-th node) object and use it when rendering.

Quiz 1

- Go to https://www.slido.com/
- Join \#cg-ys
- Click "Polls"
- Submit your answer in the following format:
- Student ID: Your answer
- e.g. 2021123456: 4.0
- Note that your quiz answer must be submitted in the above format to receive a quiz score!

Mesh

Many ways to digitally encode geometry

- EXPLICIT

- point cloud
- polygon mesh
- subdivision, NURBS
- L-systems
- IMPLICIT
- level set
- algebraic surface

- Each choice best suited to a different task/type of geometry

The Most Popular Representation : Polygon Mesh

- Because this can model any arbitrary complex shapes with relatively simple representations and can be rendered fast.
- Polygon: a "closed" shape with straight sides

- Polygon mesh: a bunch of polygons in 3D space that are connected together to form a surface
- Usually use triangles or quads (4 side polygon)

Triangle Mesh

- A general N-polygon can be
- Non-planar
- Non-convex
- , which are not desirable for fast rendering.
- A triangle does not have such problems. It's always planar \& convex.
- and N-polygons can be composed of multiple triangles.

- That's why modern GPUs draw everything as a set of triangles.
- So, we'll focus on triangle meshes.

Representation for Triangle Mesh

- It's about how to store
- vertex positions
- relationship between vertices (to make triangles)
- on memory.
- Two basic representations:
- Separate triangles
- Indexed triangle set

Vertex Winding Order

- Vertex winding order is the order in which the vertices of a polygon are listed in a representation of a polygon.
- Determines which side of the polygon is "front".
- In OpenGL, by default, polygons whose vertices appear in counterclockwise (CCW) order on the screen is front-facing.
- In Direct3D, the default front-facing winding order is clockwise (CW).

Separate triangles

Separate Triangles

- Various problems
- Wastes memory space
- Cracks due to roundoff
- Difficulty of finding neighbor triangles
- If you want find "neighbor" triangles of t2, you have to find all "zero-distance" vertices from t 2 's each vertex.

vertex buffer

stored 6 times!

Example: a cube of length 2

vertex index	position
0	$(-1,1,1)$
1	$(1,1,1)$
2	$(1,-1,1)$
3	$(-1,-1,1)$
4	$(-1,1,-1)$
5	$(1,1,-1)$
6	$(1,-1,-1)$
7	$(-1,-1,-1)$

Example Cube in Separate Triangles

- In separate triangles scheme, the cube is represented by the positions of the $\mathbf{3 6}$ vertices that make up its 12 triangles.

vertex array
\# triangle 0
-1 , 1 , 1, \# v
-1, 1,
1 , 1, \# v
\# triangle 1
-1 , 1 , 1,
-1 , -1 , 1, \# v
-1
\# triangle 2
-1 , 1 , -1, \#
$1,1,-1, ~ \# ~ v ~$
, -1 , -1, \# v
triangle
-1 , 1 , -1, \# v
-1 , -1, \#
-1 , -1 , -1, \# v
\# triangle
-1 , 1 , 1, \# v
1, 1 , 1, \# v
1 , 1 , -1, \# v
\# triangle 5
-1 , 1 , 1, \# vo
1 , 1 , -1, \# v
-1 , 1 , -1, \# v

Indexed triangle set

- Store each vertex once
- Each triangle points to its three vertices

Indexed triangle set

counter-clockwise order

vertex array verts[0]	
verts[1]	x_{0}, y_{0}, z_{0}
x_{1}, y_{1}, z_{1}	
x_{2}, y_{2}, z_{2}	
x_{3}, y_{3}, z_{3}	
\vdots	

index array	tInd[0]	$0,2,1$
	tInd[1]	$0,3,2$
		\vdots

Indexed Triangle Set

- Memory efficient: each vertex position is stored only once.
- Represents topology and geometry separately.
- Finding neighbor triangles is at least well defined.
- Neighbor triangles share same vertex indices.

Example Cube in Indexed Triangle Set

- In indexed triangle set scheme, the cube is represented by the positions of its 8 vertices and the vertex indices of its $\mathbf{1 2}$ triangles.


```
# index array
0,2,1, # to
0,3,2, # t1
4,5,6, # t2
4,6,7, # t3
0,1,5, # t4
0,5,4, # t5
3,6,2, # t6
3,7,6, # t7
1,2,6, # t8
1,6,5, # t9
0,7,3, # t10
0,4,7, # t11
```


Quiz 2

- Go to https://www.slido.com/
- Join \#cg-ys
- Click "Polls"
- Submit your answer in the following format:
- Student ID: Your answer
- e.g. 2021123456: 4.0
- Note that your quiz answer must be submitted in the above format to receive a quiz score!

Creating Polygon Meshes

- Usually, polygon meshes are created using 3D modeling programs.
- A file that stores polygon mesh data is called an object file or model file.

Blender

Maya

- Applications (such as games) usually load vertex and index data from an object file and draw the object using the loaded data.

3D Model File Formats

- DXF - AutoCAD
- Supports 2-D and 3-D; binary
- 3DS - 3DS MAX
- Flexible; binary
- VRML - Virtual reality modeling language
- ASCII - Human readable (and writeable)
- OBJ - Wavefront OBJ format
- ASCII - Human readable (and writeable)
- Extremely simple
- Widely supported
- Let's take a closer look at OBJ format!

OBJ File Format

```
# this is a comment
# List of vertex positions, in (x, y, z) form.
v 0.123 0.234 0.345
v 0.2 0.5 0.3
v ...
...
# List of vertex normals, in (x,y,z) form; normals
might not be unit vectors.
vn 0.707 0.000 0.707
vn ...
...
# List of vertex texture coordinates, in (u, v) form.
vt 0.500 1
vt ...
...
```


OBJ File Format

```
# List of faces (all argument indices are 1-based indices!)
# with vertex positions only - vertex_position_index
f 1 2 3
f 2 3 4
#
vertex_position_index/texture_coordinates_index/vertex_normal_
index
f 6/4/1 3/5/3 7/6/5
# vertex_position_index//vertex_normal_index
f 7//1 8//2 9//3
...
# vertex_position_index/texture_coordinates_index
f 3/1 4/2 5/3
```


OBJ File Format

- Other supported features:
- for polyline
- 1581249
- for materials
- mtllib [external .mtl file name]
- usemtl [material name]
- ...
- You don't need to use these features in this class.

An OBJ Example


```
\# A simple cube
v 1.000000-1.000000-1.000000
v 1.000000-1.000000 1.000000
v -1.000000 -1.000000 1.000000
v -1.000000-1.000000-1.000000
v 1.000000 1.000000-1.000000
v 1.000000 1.000000 1.000000
v -1.000000 1.000000 1.000000
v -1.000000 1.000000 -1.000000
f 1234
f5 }87
f1562
f}267
f 3784
f 5148
```


OBJ Sources

- https://free3d.com/
- https://www.cgtrader.com/free-3d-models
- You can download any .obj model files from these sites and open them in Blender.
- OBJ file format is very popular:
- Most modeling programs will export OBJ files
- Most rendering packages will read in OBJ files

Lab Session

- Now, let's start the lab today.

